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Fig. 3 Graph of
error ¢ vs time lag r

From inequality (13), it is evident that for r; < 7
6(71) < G(Tz) (14)

Now if 7; and 75 are the maximum values of 7 in two separate
autocorrelation computations for the same f; (f), inequality
(14) states that the greater the maximum time lag, the more
error is introduced into the final results.

Numerical Example

In conjunction with inequalities (13) and (14), the effect
of increasing the maximum time lag 7 now will be demon-
strated. Thus, let 7 be 109, of the total time record on
—T <t £ T and 7, be 509, of the same time record. From
(13), for r; = 0.2T

2€(0.2T) < ¢/K
and for 7, = T
$e(T) < ¢/K
From these inequalities, it follows that
[%5e(0.2T)]- [-2/e(T)} < — 1
and from (14)
€(0.2T) < €(T) < 2e(0.2T) (15)

Since the error introduced by letting the maximum time
lag 7 be 4 the data record can be almost twice the error in-
troduced by letting the maximum time lag = be {4; the data
record, it is concluded that the maximum lag in digitally
computing the autocorrelation function should not exceed
109, of the total data record.
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Orbit-Resonance of Satellites in
Librational Motion
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Introduction

GRAVITATIONALLY oriented satellite executes free
rotational oscillations about its mass center at either of
two distinet frequencies determined by the mass distribu-
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tion.2 Since both frequencies are not appreciably greater
than the orbital frequency, these are also comparable to the:
natural frequency of an orbital perturbation. A calculation.
is' presented which shows that the two types of motion,
although not dynamically coupled, nevertheless do interact.
Tt is demonstrated that orbital perturbations serve to.excite .
the low-frequency mode of rotary oscillation and that, for.
orbits of small eccentricity, this occurs at a near-resonant
condition.

Stability of Satellite Orbits

Circular orbits are shown in treatises on dynamics to be
stable for a class of inverse-power attraction laws which
includes Newtonian gravitation. It is shown here first that
periodic oscillation about the basic orbit also occurs for non-
circular orbits in an inverse-square force field, by considering a
small perturbation on an arbitrary ‘“‘undisturbed’ orbit. If
Ro(t) and ¥(¢) denote polar coordinates that locate the mass

“ center of the satellite in its basic undisturbed orbit, and

r*(t), 0'(t) represent the corresponding perturbation quantities,
then the “linearized”” equations of perturbed motion are

r! — R + 9% = (2G/Re®)r’ (1)
and
(297" + Rf")Ro = 1 (2)

where Ry and & satisfy the equations for the basic orbit, dots
denote time differentiation, @ is the constant of earth gravita-
tion, and % is an integration constant. Powers and products
of disturbance quantities have been neglected systematically
in Eqs. (1) and (2), so that these form a system of linear
ordinary differential equations. These govern motion of
satellite mass center and thus are unaffected by rotary oscilla-
tions about that point. Hence they can be analyzed by
themselves, and the characteristics of the motion are de-
termined by eliminating the angular variable ', leaving

54 (282 + QE/Ry) — (Be*/RA) ' = dn/Ry . (3)

Only for circular orbits are the coefficient and right-hand side
both constants, and evaluation of the total energy of the
motion E then leads to the equation of the harmonic oscillator
at frequency equal to the orbital frequency. Thus, orbital
perturbations oceur at precisely the rate of 1 eycle/orbit for
circular orbits. In the more general case, the coeflicients
are not constant and the motion is not simple harmonie, but
the form of the equation shows that, for orbits of small
eccentricity, the “instantaneous” frequencies of orbital
perturbations

wo = [20% + (QE/Ry — Re*/Re®) V2 4)

are not much different from 1 cycle/orbit. Equations (1)
and (2) indicate a 90° phase lag between ' and 8’, which
will be seen below to have a counterpart in the rotary motions.
For simplicity, only circular orbits will be considered hence-
forth. s

Rotational Oscillations about Mass Center (Librations)

Gravity-gradient satellite dynamic characteristics are
examined by computing the total moment of momentum of
the satellite with respeet to its mass center and relating this
to the resultant torque moment of gravitational forces acting
on constituent mass particles of the body. Orbital oscilla-
tions of the type just considered entail angular perturbations
@’ that must be included in calculation of moment of momen-
tum. The equation in vector form

dho/dt = M, (5)

is evaluated for small angular displacements «,8,y with
respect to principal inertia axes, these being shifted only
slightly from equilibrium orientation in space. In equilib-
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rium the principal axes z;, x», %3 are taken, respectively,
parallel to orbital angular velocity (and hence perpendicular
to orbital plane), oppositely parallel to orbital linear velocity,
and radial outward from gravitational center. Orbital
angular perturbation thus enhances rotation & about z,
and if the orbital angular velocity is denoted by £, the total
moment of momentum is evaluated as

hy = (@ + 6 + @A + (B — B + Ly + 2BC (8

where principal axis unit vectors and moments of inertia A,
B, C have been introduced. Note that € is the only quantity
in parentheses which is not a small perturbation.

In order to evaluate the time derivative of hy, it is necessary
to account for the rotation of coordinate axes and unit
_vectors resulting from three effects: basic orbital motion £,
perturbation orbital motion 6’, and local rotations having
components &,3,y. When this is done, one obtains

dhy/dt = i;(& + Y4 +
L{BB + @4 — OB+ A4 — B — Oy} +
i3{5C + Q4 — Byy — Q4 — B —C)8} ()

showing that, within the present small-perturbation analysis,
orbital perturbation 6’ affects only the component of moment
of momentum which relates to motion parallel to the orbital
plane. (The same is, of course, not true for large-disturbance
motion.) When the right-hand side of Eq. (7) is equated to
external torque moment, one has an extended form of Euler’s
rigid body equations, appropriate for motion about a point
moving in space.

The gravitational torque moment M, vanishes for the
equilibrium orientation in space @ = 8 = v = 0 (indeed, this
is the condition that defines equilibrium under the action of
gravity gradient forces), and its value has been found for
small departures from this orientation to be?

My = —30(B — C)ady — 30%A — C)Bi. ®

It is evident from the form of.'(8) that the moment opposes
the displacement (static stability) when the two conditions
are satisfied:

B-C>0 A—-C>0 9

These indicate the only limitations imposed upon the mass
distribution and also show which space orientations 90° away
from stable equilibrium must be unstable (by interchanging
moments of inertia in pairs). The complete dynamic stability
is determined by Egs. (1) and (2), and the three scalar
equations obtained by substituting (8) and (9) into (5) are

Aa + 30¥(B — C)ae = — AF’ (10)
BB 4404 —O)B+QA—-B -0y =0 11
Cy+LUA—~By—QA—-B—-08=0 (12

for a rigid satellite of arbitrary mass distribution.

Discussion of the Motion

The feature of greatest interest in the present problem is
the fact that orbital perturbations affect only the « motions
representing oscillations parallel to orbital plane. This
occurs only through the term on the right-hand side of Eq.
(10), where one may properly regard it as a forcing function
for « motion, since the 8’ disturbance is found from Egs. (1)
and (2) without regard for Eqs. (10-12). The natural fre-
quency for this principal mode is seen at once to be

we = Q312[(B — C)/A]H2 (13)

In the case of greatest practical interest, with axial symmetry
such that A = B, it is seen that w, is never greater than 31/
times the orbital frequency Q. Since the forcing frequency
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given by Eq. (4) was seen to be equal to @ for circular orbits,
the natural « motion may be magnified appreciably by the
nearness to resonance. Oscillations about z; and z; axes,
given by 8 and v, evidently are not affected, since these are
coupled with each other but not with the « motion. It is
easy to show that, for these symmetric configurations already
described, B and y motions are 90° out of phase with each
other, and their frequency then is given by

wg =R -2 [l — (3C/44)]12 (14)

Configurations of greatest inherent (static) stability cor-
respond to mass concenfrations close to z; axis (hence very
small values of moment of inertia C); in this limit the fre-
quency given by (14) still is only slightly greater than e,
(the limiting values, in the ratio 3!/2:2, have been given
correctly by Domojilova and her co-workers in the Russian
literature?).

Conclusions

The characteristic rotational motions of gravity-gradient
satellites do not affect the stability or the period of oscillations
due to orbital disturbances, nor does the rotational motion
induce an orbital perturbation. The converse is not true:
orbital oscillations affect the rotational motion parallel to
orbital plane, and the interaction is in the nature of an
external foreing function that is sinusoidal. The closeness of
foreing frequency to system natural frequency w, will require
closer examination, particularly for eccentric orbits.
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Bow Shock Correlation for Slightly
Blunted Cones
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HEN solving for the flow properties in the re-entry trail
of a hypersonic nose cone, it is in general necessary first
to solve for the detailed flow field in the vicinity of the body.
However, in some cases (e.g., for relatively short bodies at
high altitudes), and for the purposes of a parametric analysis,
it is sufficient merely to specify the shape of the bow shock.¢
Thus, if a simple but accurate correlation can be used, based
only on body geometry and freestream conditions, a considera-
able saving in expense and effort will result.
For highly blunted bodies (e.g., a hemisphere cylinder), the
Van Hise correlation? based on the blast wave analogy yields
good results. The equation for the shock shape in this case is

/1, = 1.424[Cp*(x/r,) 104 W

where r and z are cylindrical polar coordinates, with z meas-
ured along the body axis, whereas r, is the base radius of the
body, and Cp is its drag coefficient. It has been found, how-
ever, that, for slightly blunted conical nose shapes of low drag
coefficient, the Van Hise correlation is not satisfactory. For
these cases, a modified correlation has been formulated.

Small angle conical nose shapes, capped with a spherical
segment of radius ry, with r7/r, << 1, will be considered.
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